Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
2.
J Infect Public Health ; 16(9): 1379-1385, 2023 Jun 02.
Article in English | MEDLINE | ID: covidwho-20231276

ABSTRACT

BACKGROUND: During the early SARS-CoV-2 pandemic, all healthcare workers had specific and essential functions. However, environmental services (e.g., cleaning staff) and allied health professionals (e.g., physiotherapists) are often less recognised inpatient care. The aim of our study was to evaluate SARS-CoV-2-infection rates and describe risk factors relevant to workplace transmission and occupational safety amongst healthcare workers in COVID-19 hospitals before the introduction of SARS-CoV-2-specific vaccines. METHODS: This cross-sectional study (from May 2020 to March 2021, standardised WHO early-investigation protocol) is evaluating workplace or health-related data, COVID-19-patient proximity, personal protective equipment (PPE) use, and adherence to infection prevention and control (IPC) measures, anti-SARS-CoV-2-antibody status, and transmission pathways. RESULTS: Out of n = 221 HCW (n = 189 cleaning/service staff; n = 32 allied health professionals), n = 17 (7.7 %) were seropositive. While even SARS-CoV-2-naïve HCW reported SARS-CoV-2-related symptoms, airway symptoms, loss of smell or taste, and appetite were the most specific for a SARS-CoV-2-infection. Adherence to IPC (98.6 %) and recommended PPE use (98.2 %) were high and not associated with seropositivity. In 70.6 %, transmission occurred in private settings; in 23.5 %, at the workplace (by interaction with SARS-CoV-2-positive colleagues [17.6 %] or patient contact [5.9 %]), or remained unclear (one case). CONCLUSIONS: Infection rates were higher in all assessed 'less visible' healthcare-worker groups compared to the general population. Our data indicates that, while IPC measures and PPE may have contributed to the prevention of patient-to-healthcare-worker transmissions, infections were commonly acquired outside of work and transmitted between healthcare workers within the hospital. This finding emphasises the importance of ongoing education on transmission prevention and regular infection screenings at work.

3.
J Bone Miner Res ; 38(7): 943-950, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2316002

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection has been associated with musculoskeletal manifestations, including a negative effect on bone health. Bone formation was found to be reduced in coronavirus disease 2019 (COVID-19) patients. The aim of this case-control study was to determine whether bone metabolism is coupled or uncoupled in COVID-19 patients with moderately severe disease, the latter expressed by the requirement of hospitalization but not intensive care treatment, no need for mechanical ventilation, and a C-reactive protein level of (median [quartiles], 16.0 [4.0; 52.8]) mg/L in serum. Besides standard biochemical markers, serum levels of C-terminal telopeptide of type 1 collagen, tartrate-resistant acid phosphatase, osteocalcin, bone-specific alkaline phosphatase, sclerostin, dickkopf-1, and osteoprotegerin were evaluated in COVID-19-infected patients at the time of hospital admission, along with those of age- and sex-matched noninfected controls. The median age of the 14 female and 11 male infected patients included in the matched-pair analysis was (67 [53; 81]) years. C-terminal telopeptide of type 1 collagen was significantly lower in COVID-19 patients (0.172 [0.097; 0.375] ng/mL) than in controls (0.462 [0.300; 0.649] ng/mL; p = 0.011). The patients' osteocalcin levels (10.50 [6.49; 16.26] ng/mL) were also lower than those of controls (15.33 [11.85, 19.63] ng/mL, p = 0.025). Serum levels of sclerostin and dickkopf-1 were significantly higher in infected patients relative to controls. The remaining parameters did not differ between cases and controls. A limitation of the study was that patients and controls were recruited from different hospitals. Nevertheless, due to the geographical proximity of the two centers, we assume that this fact did not influence the results of the study. Given this limitation, the investigation showed that bone metabolism is altered but remains coupled in patients with moderately severe COVID-19. Therefore, it is important to evaluate bone turnover markers and fracture risk in these patients during the postinfection period. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).

4.
Front Immunol ; 13: 974987, 2022.
Article in English | MEDLINE | ID: covidwho-2314955

ABSTRACT

Background: Patients with inborn errors of immunity (IEI) are at increased risk for severe courses of SARS-CoV-2 infection. COVID-19 vaccination provides effective protection in healthy individuals. However, it remains unclear whether vaccination is efficient and safe in patients with constitutional dysfunctions of the immune system. Thus, we analyzed the humoral response, adverse reactions and assessed the disease activity of the underlying disease after COVID-19 vaccination in a cohort of patients suffering from IEIs or mannan-binding lectin deficiency (MBLdef). Methods: Vaccination response was assessed after basic immunization using the Elecsys anti-SARS-CoV-2 S immunoassay and via Vero E6 cell based assay to detect neutralization capabilities. Phenotyping of lymphocytes was performed by flow cytometry. Patient charts were reviewed for disease activity, autoimmune phenomena as well as immunization status and reactogenicity of the vaccination. Activity of the underlying disease was assessed using a patient global numeric rating scale (NRS). Results: Our cohort included 11 individuals with common variable immunodeficiency (CVID), one patient with warts hypogammaglobulinemia immunodeficiency myelokathexis (WHIM) syndrome, two patients with X-linked agammaglobulinemia (XLA), one patient with Muckle Wells syndrome, two patients with cryopyrin-associated periodic syndrome, one patient with Interferon-gamma (IFN-gamma) receptor defect, one patient with selective deficiency in pneumococcal antibody response combined with a low MBL level and seven patients with severe MBL deficiency. COVID-19 vaccination was generally well tolerated with little to no triggering of autoimmune phenomena. 20 out of 26 patients developed an adequate humoral vaccine response. 9 out of 11 patients developed a T cell response comparable to healthy control subjects. Tested immunoglobulin replacement therapy (IgRT) preparations contained Anti-SARS-CoV-2 S antibodies implicating additional protection through IgRT. Summary: In summary the data support the efficacy and safety of a COVID-19 vaccination in patients with IEIs/MBLdef. We recommend evaluation of the humoral immune response and testing for virus neutralization after vaccination in this cohort.


Subject(s)
COVID-19 Vaccines , COVID-19 , Mannose-Binding Lectin , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Interferon-gamma , SARS-CoV-2 , Vaccination
5.
Front Med (Lausanne) ; 10: 1049157, 2023.
Article in English | MEDLINE | ID: covidwho-2284206

ABSTRACT

Objectives: This study aimed to assess the duration of humoral responses after two doses of SARS-CoV-2 mRNA vaccines in patients with inflammatory joint diseases and IBD and booster vaccination compared with healthy controls. It also aimed to analyze factors influencing the quantity and quality of the immune response. Methods: We enrolled 41 patients with rheumatoid arthritis (RA), 35 with seronegative spondyloarthritis (SpA), and 41 suffering from inflammatory bowel disease (IBD), excluding those receiving B-cell-depleting therapies. We assessed total anti-SARS-CoV-2 spike antibodies (Abs) and neutralizing Ab titers 6 months after two and then after three doses of mRNA vaccines compared with healthy controls. We analyzed the influence of therapies on the humoral response. Results: Patients receiving biological or targeted synthetic disease-modifying antirheumatic drugs (b/tsDMARDs) showed reduced anti-SARS-CoV-2 S Abs and neutralizing Ab titers compared with HC or patients receiving conventional synthetic (cs)DMARDs 6 months after the first two vaccination doses. Anti-SARS-CoV-2 S titers of patients with b/tsDMARDs declined more rapidly, leading to a significant reduction in the duration of vaccination-induced immunity after two doses of SARS-CoV-2 mRNA vaccines. While 23% of HC and 19% of patients receiving csDMARDs were without detectable neutralizing Abs 6 months after the first two vaccination doses, this number was 62% in patients receiving b/tsDMARDs and 52% in patients receiving a combination of csDMARDs and b/tsDMARDs. Booster vaccination led to increased anti-SARS-CoV-2 S Abs in all HC and patients. However, anti-SARS-CoV-2 S Abs after booster vaccination was diminished in patients receiving b/tsDMARDs, either alone or in combination with csDMARDs compared to HC. Conclusion: Patients receiving b/tsDMARDs have significantly reduced Abs and neutralizing Ab titers 6 months after mRNA vaccination against SARS-CoV-2. This was due to a faster decline in Ab levels, indicating a significantly reduced duration of vaccination-induced immunity compared with HC or patients receiving csDMARDs. In addition, they display a reduced response to a booster vaccination, warranting earlier booster vaccination strategies in patients under b/tsDMARD therapy, according to their specific Ab levels.

6.
Clin Infect Dis ; 2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2281396

ABSTRACT

BACKGROUND: Understanding vaccine-dependent effects on protective and sustained humoral immune response are crucial to plan further vaccination strategies against COVID-19. Population-based data comparing different vaccination strategies are lacking. METHODS: This multicenter, population-based cohort study included 4,601 individuals ≥18 years of age after primary vaccination against COVID-19 at least four months ago (full immunization). We compared factors associated with residual antibody levels against SARS-CoV-2 receptor binding domain (RBD) across different vaccination strategies (BNT162b2, mRNA-1273, or ChAdOx1 nCoV-19 [ChAdOx1]). RESULTS: Our main model including 3,787 individuals (2xBNT162b2 n = 2,271, 2xmRNA-1273 n = 251, 2xChAdOx1 n = 1,265) predicted significantly lower levels of anti-RBD-antibodies after 6 months in individuals vaccinated with ChAdOx1 (392.7 BAU/ml) compared to those vaccinated with BNT162b2 (1179.5 BAU/ml) or mRNA-1273 (2098.2 BAU/ml). Vaccine-dependent association of antibody levels was found for age with a significant predicted difference in BAU/ml per year for BNT162b2 (-21.5 [95%CI -24.7 to -18.3]) and no significant association for mRNA-1273 (-4.0 [95%CI -20.0 to 12.1]) or ChAdOx1 (1.7 [95%CI 0.2 to 3.1]). The predicted decrease over time since full immunization was highest in mRNA-1273 (-23.4 [95%CI -31.4 to -15.4]) compared to BNT162b2 -5.9 [95%CI -7 to -4.8]). Higher antibody levels were observed for individuals with systemic adverse events upon vaccination and current smoking (BNT162b2), for days between first and second vaccination (BNT162b2 and ChAdOx1) and for absence of comorbidities (all). CONCLUSION: Our study revealed population-based evidence of vaccine-dependent effects of age and time since full immunization on humoral immune response. Findings underline the importance of an individualized vaccine selection, especially in elderly individuals.

7.
Ann Rheum Dis ; 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-2265654

ABSTRACT

OBJECTIVES: A third COVID-19 vaccination is recommended for immunosuppressed patients. However, data on immunogenicity and safety of a third COVID-19 vaccination in patients with immune-mediated inflammatory diseases (IMIDs) are sparse and therefore addressed within this clinical trial. METHODS: 60 immunosuppressed patients and 48 healthy controls (HCs) received a third vaccination with an mRNA vaccine. The primary endpoint was defined as the presence of antibody levels against the receptor-binding domain (RBD)>1500 BAU/mL in patients with IMIDs versus HCs. Further endpoints included differences in neutralising antibodies and cellular immune responses after the third vaccination. Reactogenicity was recorded for 7 days, and safety was evaluated until week 4. RESULTS: Rate of individuals with anti-RBD antibodies>1500 BAU/mL was not significantly different after the third vaccination between patients with IMIDs and HCs (91% vs 100% p=0.101). Anti-RBD and neutralising antibody levels were significantly lower in patients with IMIDs after the third vaccination than in HCs (p=0.002 and p=0.016, respectively). In contrast, fold increase in antibody levels between week 0 and 4 was higher in patients with IMIDs. Treatment with biological (b) disease-modifying anti-rheumatic drugs (DMARD) or combination of bDMARDs and conventional synthetic DMARDs was associated with reduced antibody levels. Enhanced cellular immune response to wild type and Omicron peptide stimulation was observed after the third vaccination. No serious adverse event was attributed to the third vaccination. CONCLUSION: Our clinical trial data support the immunogenicity and safety of a third COVID-19 vaccination in patients with IMIDs. However, effects of DMARD therapy on immunogenicity should be considered. TRIAL REGISTRATION NUMBER: EudraCT No: 2021-002693-10.

8.
Clin Microbiol Infect ; 29(5): 635-641, 2023 May.
Article in English | MEDLINE | ID: covidwho-2244439

ABSTRACT

OBJECTIVE: To investigate the immunogenicity and safety of BNT162b2 booster vaccination with and without a tetravalent influenza vaccine. METHODS: A prospective, open-label cohort study on immunogenicity and safety of COVID-19 booster vaccination with or without a tetravalent influenza vaccine was performed. Eight hundred thirty-eight health care workers were included in the following study arms: BNT162b2 booster-only, influenza-vaccine-only or combination of both. Levels of antibodies against SARS-CoV-2 spike receptor binding domain, and haemagglutinin inhibition tested for four different influenza strains (A(H1N1)pdm09, A(H3N2), B/Victoria, B/Yamagata) were measured at the time of vaccination and 4 weeks later. RESULTS: After 4 weeks, median (interquartile range) levels of antibodies against the receptor binding domain of the viral spike (S) protein and relative change from baseline were high in individuals who received BNTb162b2 booster vaccination only (absolute: 16 600 [10 980-24 360] vs. 12 630 [8198-18 750] BAU/mL [p < 0.0001]; relative increase: 49% [23.6-95.3] vs. 40% [21.9-80.6] [p 0.048]; booster-only n = 521 vs. combination-arm n = 229 respectively). Results were confirmed after matching for sex, age, body mass index, baseline antibody levels and vaccine compound received for primary immunization (absolute: 13 930 [10 610-22 760] vs. 12 520 [8710-17 940]; [p 0.031]; relative increase: 55.7% [27.8-98.5] vs. 42.2% [22.9-74.5]; p 0.045). Adverse events were almost identical in the booster-only and the combination-arm, but numerically low in the influenza arm (525/536 [97.9%] vs. 235/240 [97.9%] vs. 26/33 [78.8 %]). DISCUSSION: Although no safety concerns occurred, our study provides evidence on reduced immunogenicity of a BNT162b2 booster vaccination in combination with a tetravalent influenza vaccine. Further studies investigating new influenza variants as well as potential differences vaccine effectiveness are needed.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Antibodies, Viral , BNT162 Vaccine , Cohort Studies , COVID-19/etiology , Influenza A Virus, H3N2 Subtype , Influenza Vaccines/adverse effects , Influenza, Human/prevention & control , Prospective Studies , SARS-CoV-2 , Vaccination/adverse effects , Vaccines, Inactivated
9.
Infect Agent Cancer ; 18(1): 9, 2023 Feb 12.
Article in English | MEDLINE | ID: covidwho-2243025

ABSTRACT

BACKGROUND: Patients with cancer are at high risk for severe courses of COVID-19. Based on (pre-)clinical data suggesting a potential protective effect due to the immunomodulating properties of azithromycin, we have initiated a prospective randomized trial. METHODS: This randomized, single-center, single-blinded, placebo-controlled phase 2 trial included adult patients with cancer undergoing systemic treatment. Patients were 1:1 randomized to oral azithromycin (1500 mg once weekly for 8 weeks) or placebo. The primary endpoint was the cumulative number of SARS-CoV-2 infections 12 weeks after treatment initiation. RESULTS: In total, 523 patients were screened, 68 patients were randomized, and 63 patients received at least one dose of the study drug. Due to low acceptance and a lack of SARS-CoV-2 infections in the study cohort, the study was prematurely closed. With no reported grade III-IV possibly treatment-related adverse events, azithromycin was generally well tolerated. Overall survival (OS) rates after 12 months were 83.5% and 70.3% in the azithromycin and placebo group, respectively (p = 0.37). Non-SARS-CoV-2 infections occurred in 4/32 (12.5%) in the azithromycin and 3/31 (9.7%) in the placebo group (p = 1). No emergence of azithromycin-resistant S. aureus strains could be observed. According to treatment group, longitudinal alterations in systemic inflammatory parameters were detected for neutrophil/lymphocyte and leukocyte/lymphocyte ratios. CONCLUSION: Although efficacy could not be assessed due to premature closure and low incidence of SARS-CoV-2 infections, azithromycin was associated with a favorable side effect profile in patients with cancer. As other prophylactic treatments are limited, SARS-CoV-2 vaccination remains a high priority in oncological patients. CLINICALTRIALS: gov registration number and date (dd/mm/yyyy): NCT04369365, 30/04/2020.

10.
J Clin Virol ; 158: 105345, 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2244172

ABSTRACT

OBJECTIVES: To investigate the comparability of WHO standard referenced commercial SARS-CoV-2 antibody tests over three doses of BNT162b2 vaccine and up to 14 months. METHODS: 114 subjects (without previous SARS-CoV-2 infection or immunosuppressive medication) vaccinated with three doses of BNT162b2 were included in this study. Antibody levels were quantified 3 weeks after the first dose, 5-6 weeks and 7 months after the second dose, and 4-5 weeks and 4 months after the third dose using the Roche Elecsys SARS-CoV-2 S, the Abbott SARS-CoV-2 IgG II Quant, the DiaSorin LIAISON SARS-CoV-2 TrimericS IgG, the GenScript cPASS sVNT and the TECO sVNT assays. RESULTS: For each time point analyzed, systematic differences are evident between the results in BAU/mL of the three antibody binding assays. The assay ratios change in a time-dependent manner even beyond administering the third dose (Roche measuring 9 and 3 times higher than Abbott and DiaSorin, respectively). However, changes decrease in magnitude with increasing time intervals from the first dose. IgG-based assays show better agreement across them than with Roche (overall correlations: Abbott x DiaSorin: ρ = 0.94 vs. Abbott x Roche: ρ=0.89, p < 0.0001; DiaSorin x Roche: ρ = 0.87, p < 0.0001), but results are not interchangeable. The sVNTs suggest an underestimation of antibody levels by Roche and slight overestimation by both IgG assays after the first vaccine dose. CONCLUSIONS: Standardization of SARS-CoV-2 antibody binding assays still needs to be improved to allow reliable use of variable assay systems for longitudinal analyses.

11.
Acta Ophthalmologica ; 100(S275), 2022.
Article in English | ProQuest Central | ID: covidwho-2232569

ABSTRACT

Purpose: The SARS‐CoV‐2 pandemic has affected all countries in the world and is still ongoing. Although respiratory symptoms are the main manifestation of acute infection, there is also increasing evidence that neurological and vascular symptoms occur, and it is unknown whether residuals remain after patients have recovered. We therefore set out to investigate whether ocular vascular alterations remain after patients have recovered.Methods: Patients that had recovered from COVID‐19 infection within the last 6 months before inclusion and healthy age‐ and sex‐matched controls were recruited. Main inclusion criteria for patients were confirmed positive PCR test for SARS‐CoV‐2 in the medical history and positive testing for SARS‐CoV‐2 seroprevalence while controls had no history of COVID‐19 infection. Arteriovenous (AV) difference in oxygen saturation was calculated out of retinal arterial and venous oxygen saturation, which were measured with a commercially available Dynamic Vessel Analyser (DVA, Imedos, Germany). Retinal vessel diameters and arteriovenous ratio (AVR) were assessed using the same device. In addition, mean blur rate in the tissue area of the optic nerve head (MT) was quantified using laser speckle flowgraphy (LSFG, Nidek, Japan).Results: 29 patients that had recovered from moderate to severe COVID‐19 requiring hospitalization (mean age 35 ± 17 years) and 11 control subjects (mean age 36 ± 12 years) were included in the present study. No differences between groups regarding sex or concomitant diseases in the medical history were found. Body mass index (BMI) was significantly higher in patients that had recovered from COVID‐19 (27.5 ± 5.6 vs. 24.5 ± 2.8 m2/kg, p = 0.036). AVR as well as AV difference in oxygen saturation was significantly lower in patients compared to healthy controls (p = 0.021 for AVR and p = 0.023 for AV difference in oxygen saturation). MT in the optic nerve head also was significantly lower in patients (23.4 ± 10.1 a.u.) than in control subjects (47.3 ± 26.6 a.u., p < 0.001).Conclusions: The results of this study imply that retinal metabolism is still altered in patients after recovering from COVID‐19 infection. Longitudinal studies are required to investigate whether these changes in retinal vessels as well as optic nerve head blood flow are temporary or remain.

12.
J Autoimmun ; 135: 102981, 2023 02.
Article in English | MEDLINE | ID: covidwho-2233518

ABSTRACT

BACKGROUND: A 3rd COVID-19 vaccination is currently recommended for patients under immunosuppression. However, a fast decline of antibodies against the SARS-CoV-2 receptor-binding domain (RBD) of the spike protein has been observed. Currently it remains unclear whether immunosuppressive therapy affects kinetics of humoral and cellular immune responses. METHODS: 50 patients under immunosuppression and 42 healthy controls (HCs) received a 3rd dose of an mRNA-based vaccine and were monitored over a 12-weeks period. Humoral immune response was assessed 4 and 12 weeks after 3rd dose. Antibodies were quantified using the Elecsys Anti-SARS-CoV-2 Spike immunoassay against the receptor-binding domain (RBD) of the spike protein. SARS-CoV-2-specific T cell responses were quantified by IFN-γ ELISpot assays. Adverse events, including SARS-CoV-2 infections, were monitored over a 12-week period. RESULTS: At week 12, reduced anti-RBD antibody levels were observed in IMID patients as compared to HCs (median antibody level 5345 BAU/ml [1781-10,208] versus 9650 BAU/ml [6633-16,050], p < 0.001). Reduction in relative antibody levels was significantly higher in IMID patients as compared to HCs at week 12 (p < 0.001). Lowest anti-RBD antibody levels were detected in IMID patients who received biological disease-modifying anti-rheumatic drugs (DMARDs) or a combination therapy with conventional synthetic and biological DMARDs. Number of SARS-CoV-2-specific T cells against wildtype and Omicron variants remained stable over 12 weeks in IMID patients. No serious adverse events were reported. CONCLUSION: Due to a fast decline in anti-RBD antibodies in IMID patients an early 4th vaccination should be considered in this vulnerable group of patients.


Subject(s)
Antirheumatic Agents , COVID-19 , Humans , COVID-19 Vaccines , Spike Glycoprotein, Coronavirus , SARS-CoV-2 , Antibodies , Immunity, Humoral , Antibodies, Viral , Vaccination
13.
Clin Chem Lab Med ; 2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2233786

ABSTRACT

OBJECTIVES: Anti-nucleocapsid (NC) antibodies are produced in response to SARS-CoV-2 infection. Therefore, they are well suited for the detection of a previous infection. Especially in the case of seroprevalence studies or during the evaluation of a novel in-vitro diagnostic test, samples have been stored at <-70 °C (short- and long-term) or 2-10 °C (short-term) before analysis. This study aimed to assess the impact of different storage conditions relevant to routine biobanking on anti-NC antibodies. METHODS: The preanalytical impact of short-term storage (84 [58-98] days) on <-70 °C and for 14 days at 2-10 °C was evaluated using samples from 111 donors of the MedUni Vienna Biobank. Long-term effects (443 [409-468] days) were assessed using 208 samples from Biobank Graz and 49 samples from Biobank Vienna. Anti-Nucleocapsid antibodies were measured employing electrochemiluminescence assays (Roche Anti-SARS-CoV-2). RESULTS: After short-term storage, the observed changes did not exceed the extent that could be explained by analytical variability. In contrast, results after long-term storage were approximately 20% higher and seemed to increase with storage duration. This effect was independent of the biobank from which the samples were obtained. Accordingly, the sensitivity increased from 92.6 to 95.3% (p=0.008). However, comparisons with data from Anti-Spike protein assays, where these deviations were not apparent, suggest that this deviation could also be explained by the analytical variability of the qualitative Anti-NC assay. CONCLUSIONS: Results from anti-NC antibodies are stable during short-term storage at <-70 °C and 2-10 °C. After long-term storage, a slight increase in sensitivity could not be ruled out.

14.
BMJ Open ; 13(1): e063760, 2023 01 18.
Article in English | MEDLINE | ID: covidwho-2193773

ABSTRACT

OBJECTIVES: This study aimed to estimate and compare the prevalence of the virus-specific antibodies against the SARS-CoV-2 nucleoprotein antigen (anti-SARS-CoV-2 N) in healthcare workers and an all-comer paediatric and adult patient population. DESIGN, SETTING AND PARTICIPANTS: A longitudinal study enrolling healthcare professionals and concurrent serial cross-sectional studies of unselected all-comer patients were conducted at an Austrian academic medical centre. Healthcare workers were tested at enrolment and after 1, 2, 3, 6 and 12 months. The cross-sectional studies in patients were conducted at three time periods, which roughly coincided with the times after the first, second and third wave of SARS-CoV-2 in Austria (ie, 24 August-7 September 2020; 8-22 February 2021 and 9-23 November 2021). Anti-SARS-CoV-2 N antibodies were measured using a sandwich electrochemiluminescence assay (Roche). RESULTS: In total, 2735 and 9275 samples were measured in 812 healthcare workers (median age: 40 years, 78% female) and 8451 patients (median age: 55 years, 52% female), respectively. Over the entire study period, anti-SARS-CoV-2 N antibodies were detected in 98 of 812 healthcare workers, resulting in a seroprevalence of 12.1% (95% CI 10.0% to 14.5%), which did not differ significantly (p=0.63) from that of the all-comer patient population at the end of the study period (407/3184; 12.8%, 95% CI 11.7% to 14.0%). The seroprevalence between healthcare workers and patients did not differ significantly at any time and was 1.5-fold to 2-fold higher than the number of confirmed cases in Austria throughout the pandemic. In particular, there was no significant difference in the seroprevalence between paediatric and adult patients at any of the tested time periods. CONCLUSION: Throughout the pandemic, healthcare staff and an adult and paediatric all-comer patient population had similar exposure to SARS-CoV-2. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Identifier: NCT04407429.


Subject(s)
COVID-19 , Adult , Child , Female , Humans , Male , Middle Aged , Academic Medical Centers , Antibodies, Viral , Austria/epidemiology , COVID-19/epidemiology , Cross-Sectional Studies , Health Personnel , Longitudinal Studies , Nucleoproteins , Prevalence , SARS-CoV-2 , Seroepidemiologic Studies
15.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2045606

ABSTRACT

Background Patients with inborn errors of immunity (IEI) are at increased risk for severe courses of SARS-CoV-2 infection. COVID-19 vaccination provides effective protection in healthy individuals. However, it remains unclear whether vaccination is efficient and safe in patients with constitutional dysfunctions of the immune system. Thus, we analyzed the humoral response, adverse reactions and assessed the disease activity of the underlying disease after COVID-19 vaccination in a cohort of patients suffering from IEIs or mannan-binding lectin deficiency (MBLdef). Methods Vaccination response was assessed after basic immunization using the Elecsys anti-SARS-CoV-2 S immunoassay and via Vero E6 cell based assay to detect neutralization capabilities. Phenotyping of lymphocytes was performed by flow cytometry. Patient charts were reviewed for disease activity, autoimmune phenomena as well as immunization status and reactogenicity of the vaccination. Activity of the underlying disease was assessed using a patient global numeric rating scale (NRS). Results Our cohort included 11 individuals with common variable immunodeficiency (CVID), one patient with warts hypogammaglobulinemia immunodeficiency myelokathexis (WHIM) syndrome, two patients with X-linked agammaglobulinemia (XLA), one patient with Muckle Wells syndrome, two patients with cryopyrin-associated periodic syndrome, one patient with Interferon-gamma (IFN-gamma) receptor defect, one patient with selective deficiency in pneumococcal antibody response combined with a low MBL level and seven patients with severe MBL deficiency. COVID-19 vaccination was generally well tolerated with little to no triggering of autoimmune phenomena. 20 out of 26 patients developed an adequate humoral vaccine response. 9 out of 11 patients developed a T cell response comparable to healthy control subjects. Tested immunoglobulin replacement therapy (IgRT) preparations contained Anti-SARS-CoV-2 S antibodies implicating additional protection through IgRT. Summary In summary the data support the efficacy and safety of a COVID-19 vaccination in patients with IEIs/MBLdef. We recommend evaluation of the humoral immune response and testing for virus neutralization after vaccination in this cohort.

16.
J Clin Pathol ; 2022 Aug 30.
Article in English | MEDLINE | ID: covidwho-2020140

ABSTRACT

BACKGROUND: Serological tests are widely used in various medical disciplines for diagnostic and monitoring purposes. Unfortunately, the sensitivity and specificity of test systems are often poor, leaving room for false-positive and false-negative results. However, conventional methods were used to increase specificity and decrease sensitivity and vice versa. Using SARS-CoV-2 serology as an example, we propose here a novel testing strategy: the 'sensitivity improved two-test' or 'SIT²' algorithm. METHODS: SIT² involves confirmatory retesting of samples with results falling in a predefined retesting zone of an initial screening test, with adjusted cut-offs to increase sensitivity. We verified and compared the performance of SIT² to single tests and orthogonal testing (OTA) in an Austrian cohort (1117 negative, 64 post-COVID-positive samples) and validated the algorithm in an independent British cohort (976 negatives and 536 positives). RESULTS: The specificity of SIT² was superior to single tests and non-inferior to OTA. The sensitivity was maintained or even improved using SIT² when compared with single tests or OTA. SIT² allowed correct identification of infected individuals even when a live virus neutralisation assay could not detect antibodies. Compared with single testing or OTA, SIT² significantly reduced total test errors to 0.46% (0.24-0.65) or 1.60% (0.94-2.38) at both 5% or 20% seroprevalence. CONCLUSION: For SARS-CoV-2 serology, SIT² proved to be the best diagnostic choice at both 5% and 20% seroprevalence in all tested scenarios. It is an easy to apply algorithm and can potentially be helpful for the serology of other infectious diseases.

17.
Microbiol Spectr ; 10(5): e0212922, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2019796

ABSTRACT

The SARS-CoV-2 Omicron variant is characterized by substantial changes in the antigenic structure of the Spike (S) protein. Therefore, antibodies induced by primary Omicron infection lack neutralizing activity against earlier variants. In this study, we analyzed whether these antigenic changes impact the sensitivity of commercial anti-SARS-CoV-2 antibody assays. Sera from 37 unvaccinated, convalescent individuals after putative primary Omicron infection were tested with a panel of 20 commercial anti-SARS-CoV-2 immunoassays. As controls, we used samples from 43 individuals after primary infection with the SARS-CoV-2 ancestral wild-type strain. In addition, variant-specific live-virus neutralization assays were used as a reference for the presence of SARS-CoV-2-specific antibodies in the samples. Notably, in Omicron convalescents, there was a statistically significant reduction in the sensitivity of all antibody assays containing S or its receptor-binding-domain (RBD) as antigens. Furthermore, antibody levels quantified by these assays displayed a weaker correlation with Omicron-specific neutralizing antibody titers than with those against the wild type. In contrast, the sensitivity of nucleocapsid-protein-specific immunoassays was similar in wild-type and Omicron-infected subjects. In summary, the antigenic changes in the Omicron S lead to reduced immunoreactivity in the current commercial S- and RBD-specific antibody assays, impairing their diagnostic performance. IMPORTANCE This study demonstrates that the antigenic changes of the SARS-CoV-2 Omicron variant affect test results from commercial Spike- and RBD-specific antibody assays, significantly diminishing their sensitivities and diagnostic abilities to assess neutralizing antibodies.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Neutralization Tests , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , SARS-CoV-2 , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , COVID-19/diagnosis , Antibodies, Viral , Antibodies, Neutralizing
18.
Nat Commun ; 13(1): 5362, 2022 09 12.
Article in English | MEDLINE | ID: covidwho-2016704

ABSTRACT

Impaired response to COVID-19 vaccination is of particular concern in immunosuppressed patients. To determine the best vaccination strategy for this vulnerable group we performed a single center, 1:1 randomized blinded clinical trial. Patients who failed to seroconvert upon two mRNA vaccinations (BNT162b2 or mRNA-1273) are randomized to receive either a third dose of the same mRNA or the vector vaccine ChAdOx1 nCoV-19. Primary endpoint is the difference in SARS-CoV-2 spike antibody seroconversion rate between vector and mRNA vaccinated patients four weeks after the third dose. Secondary outcomes include cellular immune responses. Seroconversion rates at week four are significantly higher in the mRNA (homologous vaccination, 15/24, 63%) as compared to the vector vaccine group (heterologous vaccination, 4/22, 18%). SARS-CoV-2-specific T-cell responses are reduced but could be increased after a third dose of either vector or mRNA vaccine. In a multivariable logistic regression analysis, patient age and vaccine type are associated with seroconversion. No serious adverse event is attributed to COVID-19 booster vaccination. Efficacy and safety data underline the importance of a booster vaccination and support the use of a homologous mRNA booster vaccination in immunosuppressed patients.Trial registration: EudraCT No.: 2021-002693-10.


Subject(s)
BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Humans , Immunization, Secondary , RNA, Messenger , SARS-CoV-2/genetics , Vaccination , Vaccines, Synthetic , mRNA Vaccines
19.
Ann Rheum Dis ; 81(12): 1750-1756, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1992984

ABSTRACT

OBJECTIVES: Patients under rituximab therapy are at high risk for a severe COVID-19 disease course. Humoral immune responses to SARS-CoV-2 vaccination are vastly diminished in B-cell-depleted patients, even after a third vaccine dose. However, it remains unclear whether these patients benefit from a fourth vaccination and whether continued rituximab therapy affects antibody development. METHODS: In this open-label extension trial, 37 rituximab-treated patients who received a third dose with either a vector or mRNA-based vaccine were vaccinated a fourth time with an mRNA-based vaccine (mRNA-1273 or BNT162b2). Key endpoints included the humoral and cellular immune response as well as safety after a fourth vaccination. RESULTS: The number of patients who seroconverted increased from 12/36 (33%) to 21/36 (58%) following the fourth COVID-19 vaccination. In patients with detectable antibodies to the spike protein's receptor-binding domain (median: 8.0 binding antibody units (BAU)/mL (quartiles: 0.4; 13.8)), elevated levels were observed after the fourth vaccination (134.0 BAU/mL (quartiles: 25.5; 1026.0)). Seroconversion and antibody increase were strongly diminished in patients who received rituximab treatment between the third and the fourth vaccination. The cellular immune response declined 12 weeks after the third vaccination, but could only be slightly enhanced by a fourth vaccination. No unexpected safety signals were detected, one serious adverse event not related to vaccination occurred. CONCLUSIONS: A fourth vaccine dose is immunogenic in a fraction of rituximab-treated patients. Continuation of rituximab treatment reduced humoral immune response, suggesting that rituximab affects a second booster vaccination. It might therefore be considered to postpone rituximab treatment in clinically stable patients. TRIAL REGISTRATION NUMBER: 2021-002348-57.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Rituximab/adverse effects , Antibodies, Viral , SARS-CoV-2 , BNT162 Vaccine , Vaccination , RNA, Messenger , Immunogenicity, Vaccine
20.
Vaccines (Basel) ; 10(7)2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1939053

ABSTRACT

BACKGROUND AND OBJECTIVE: This prospective cohort study analyzed the immune response to COVID-19 mRNA vaccines in lung transplant recipients (LuTRs) compared to healthy controls (HCs) at a 6-month follow-up. METHODS: After the first two doses of either BNT162b2 or mRNA-1273, SARS-CoV-2 antibodies were measured in LuTRs (n = 57) and sex- and age-matched HCs (n = 57). Antibody kinetics during a 6-month follow-up and the effect of a third vaccine dose were evaluated. Humoral responses were assessed using the Elecsys® Anti-SARS-CoV-2 S immunoassay. In 16 LuTRs, SARS-CoV-2-specific T cell responses were quantified using IFN-γ ELISpot assays. RESULTS: Seroconversion rates were 94% and 100% after the first and second vaccine dose, respectively, in HCs, while only 19% and 56% of LuTRs developed antibodies. Furthermore, 22 of 24 LuTRs who received the third vaccine dose showed seroconversion (five of seven primary non-responders and 17 of 17 primary responders). A T cell response against SARS-CoV-2-spike S1 and/or S2 was detected in 100% (16/16) of HCs and 50% (8/16) of LuTRs. CONCLUSIONS: The data suggest that LuTRs have reduced humoral and cellular immune responses after two doses of COVID-19 mRNA vaccination when compared to HCs. A third dose may be of substantial benefit.

SELECTION OF CITATIONS
SEARCH DETAIL